{ Tube Sheet Manufacturer }

  • What is Stainless Steel Tube Sheets?

    Stainless steel tube sheets are components used in heat exchangers, condensers, and other applications that require efficient heat transfer. It is a circular plate with precision drilling, used to accommodate tubes in the bundle. The tube sheet is used as a support structure and compression component, and provides a safe attachment for the tubes.

     

     

    Chemical Component of Stainless Steel

    The main chemical component of stainless steel is chromium, which reacts with oxygen to form a dense oxide film, which has heat resistance and prevents further corrosion of the metal. This allows stainless steel tube sheets to be used for a long time in various harsh environments. Stainless steel, due to its unique microstructure, has high tensile strength and ductility, ensuring that the tubesheet is not easily deformed or fractured under external forces. Especially in high and low temperature environments, stainless steel can still maintain good mechanical properties and is not easily brittle.

     

     

     

    The advantages of stainless steel tubesheets

    Stainless steel has become the preferred material for tubesheets due to its excellent corrosion resistance. It has rust prevention, oxidation resistance, and anti fouling properties, suitable for high temperature and corrosive environments. Stainless steel tube sheets are commonly used in industries such as petroleum and natural gas, chemical processing, power generation, and HVAC. Stainless steel tube plates have good hygiene performance. Due to its smooth surface and no pores, stainless steel materials are not easy to breed bacteria and microorganisms, and are easy to clean and disinfect, meeting hygiene standards. Therefore, stainless steel tube plates are widely used in medical, food processing and other industries, such as surgical instruments, food equipment, etc. In addition, stainless steel tube sheets have sustainability. Stainless steel materials can be recycled and can be melted again to produce new products, reducing resource waste. Meanwhile, stainless steel materials have a long service life, are not easily damaged, reduce the frequency of maintenance and replacement, and have good economic and environmental benefits.

     

     

    How to manufacture Stainless steel tube plates

    Stainless steel tube plates are manufactured using various methods, including mechanical processing, drilling, and welding. Precision drilling ensures precise alignment of pipelines, thereby achieving efficient heat transfer. Welding is commonly used to secure pipes to pipe sheets, providing reliable and leak free joints. Wuxi Changrun has absolute equipment strength in tube sheet processing services. At present, the heavy-duty precision workshop has 11 large deep hole drilling equipment and 31 CNC flat drilling equipment, as well as a series of advanced domestic and foreign supporting equipment with high precision, full specifications, and multiple functions. It can provide machining services such as turning, milling, boring, and drilling. There are also advanced equipment such as cutting and welding involved in the previous process.

     

     

    The selection of stainless steel for tube plates depends on factors such as operating conditions, temperature, and the corrosiveness of the treated fluid. The common grades of stainless steel used in tube sheets include austenitic stainless steel (such as 304 and 316), duplex stainless steel, and ultra duplex stainless steel. These grades combine corrosion resistance, mechanical strength, and thermal conductivity. In summary, stainless steel tube sheets are key components of heat exchangers and condensers. It provides support for pipelines, promotes effective heat transfer, and provides excellent corrosion resistance under harsh operating conditions. The use of stainless steel tube sheets ensures the lifespan, reliability, and performance of heat transfer equipment in a wide range of industrial applications.

     

  • Titanium Alloy Tube sheet VS Stainless Steel Tubesheet

    Corrosion resistance:

    Titanium tube sheets have high corrosion resistance, high strength, light weight, and are suitable for aqua regia, chlorine gas, hydrochloric acid, nitric acid, sulfides. They have better corrosion resistance to seawater than stainless steel and are more heat-resistant and cold resistant than stainless steel. Titanium alloy tube sheets have excellent corrosion resistance and biocompatibility, making them suitable for use in more harsh environments. Stainless steel tube sheets have good corrosion fatigue resistance and wear corrosion performance, high strength and fatigue strength, low tendency for hot cracking, higher thermal conductivity compared to austenitic stainless steel, smaller linear expansion coefficient plate, and are suitable for manufacturing tubes for heat exchangers.

     

     

    Strength to weight ratio:

    Titanium alloy tube sheets are lighter and more durable than stainless steel tube sheets. Titanium alloy tube sheets have higher strength and lower density, making them commonly used for manufacturing high-strength parts and structures, while also being lighter in weight. Stainless steel tube plates are relatively heavy and have relatively low strength.

     

     

    Production cost:

    Titanium alloy tube sheets are more expensive than stainless steel tube sheets. The production and processing costs of titanium alloys are high because their manufacturing requires higher temperatures and more advanced technology, as well as more expensive materials. Therefore, if it is necessary to use in harsh environments and requires high-strength and lightweight materials, titanium alloys may be more suitable. When used in low strength, generally corrosive environments, stainless steel may be a better choice.

     

     

    Titanium and stainless steel tube plates are widely used in industries such as petroleum, chemical, natural gas, medical, and food. The choice of tube plate to use needs to be comprehensively considered based on the properties of the medium and cost accounting.